
Report for Cellula Life
Game Contracts

Date: April 8, 2024 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . 1
1.2 Disclaimer . 1
1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2
1.3.2 DeFi Security . 2
1.3.3 NFT Security . 3
1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

Chapter2Findings 5
2.1 Software Security . 5

2.1.1 Potential Gene Manipulation Due to Predictable Randomness 5
2.2 DeFi Security . 6

2.2.1 Lack of tokenId Check in Function createLife() 6
2.2.2 Lack of _currentCellAuction.sold Update in Function addNewAuction . . 8
2.2.3 Incorrect Update of workEndTime . 9
2.2.4 Lack of Refund in Function buyFood() . 10
2.2.5 Lack of Check in Function addNewAuction() 10
2.2.6 Lack of Interface to Withdraw _poolFeeCollected Fee 11
2.2.7 Lack of Upper Limit in Function Withdraw() 13

2.3 Additional Recommendation . 13
2.3.1 Lack of Check in Function createLife() . 13
2.3.2 Incorrect Comments . 14
2.3.3 Redundant code . 14
2.3.4 Improper usage of function Transfer . 15

2.4 Note . 15
2.4.1 Higher Cell Price Due to Round Down Design 16
2.4.2 Inconsistent BLOCK_TIME . 16
2.4.3 Lack of Access Control in sendClaimEnergyRequest() 16
2.4.4 Lack of Evolution Implementation . 17

Report Manifest

Item Description
Client Cellula
Target Cellula Life Game Contracts

Version History

Version Date Description
1.0 April 8, 2024 First Release

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The focus of this audit is on the Cellula Life Game Contracts of the Cellula 1. The Cellula
introduces a Full-Chain Game that combines two types of NFTs: BitCell and BitLife. The
issuance curve is determined by the VRGDA method, with BitCell having a fixed total supply of
10,220 units and BitLife having no upper limit on the total supply. The game rules are based
on the logic of Conway’s Game of Life, where each BitCell is a 3x3 matrix, and each BitLife
NFT requires a combination of 2 to 9 BitCells to be minted.

Please note that the audit scope is limited to the following smart contracts:
src/CellGame.sol
src/Energy.sol
src/Helps.sol
src/Life.sol
src/interface/ICellGame.sol
src/interface/ILife.sol
src/lib/BitMap.sol
src/lib/SignedWadMath.sol
src/lib/VRGDA.sol

The auditing process is iterative. Specifically, we would audit the commits that fix the
discovered issues. If there are new issues, we will continue this process. The commit SHA
values during the audit are shown in the following table. Our audit report is responsible for
the code in the initial version (Version 1), as well as new code (in the following versions) to fix
issues in the audit report.

Project Version Commit Hash

Cellula Life Game Contracts
Version 1 9be5051fe3471eb44fd1911d17c26d7b5be1a208
Version 2 2fc1536504e46b0a14b96664ebbfecde2a2db405

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.

1https://github.com/cellulalifegame/Energy-Factory-Solidity/tree/main

https://github.com/cellulalifegame/Energy-Factory-Solidity/tree/main

Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly
specified, the security of the language itself (e.g., the solidity language), the underlying com-
piling toolchain and the computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,

and then manually verify (reject or confirm) the issues reported by them.
- Semantic Analysis We study the business logic of smart contracts and conduct further

investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We also manually analyze possible attack scenarios with independent
auditors to cross-check the result.

- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy
∗ DoS
∗ Access control
∗ Data handling and data flow
∗ Exception handling
∗ Untrusted external call and control flow
∗ Initialization consistency
∗ Events operation
∗ Error-prone randomness
∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency
∗ Functionality consistency
∗ Permission management
∗ Business logic

2

∗ Token operation
∗ Emergency mechanism
∗ Oracle security
∗ Whitelist and blacklist
∗ Economic impact
∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item
∗ Verification of the token receiver
∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization
∗ Code quality and style

�

Note The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by
both industry and academy, including OWASP Risk Rating Methodology 2 and Common Weak-
ness Enumeration 3. The overall severity of the risk is determined by likelihood and impact.
Specifically, likelihood is used to estimate how likely a particular vulnerability can be uncov-
ered and exploited by an attacker, while impact is used to measure the consequences of a
successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four cate-
gories:

- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.
- Confirmed The item has been recognized by the client, but not fixed yet.
- Fixed The item has been confirmed and fixed by the client.

4

Chapter 2 Findings

In total, we find eight potential security issues. Besides, we also have four recommenda-
tion and four notes.

- High Risk: 2
- Medium Risk: 6
- Low Risk: 0
- Recommendation: 4
- Note: 4

ID Severity Description Category Status

1 Medium Potential Gene Manipulation Due to Pre-
dictable Randomness

Software Secu-
rity Confirmed

2 High Lack of tokenId Check in Function
createLife()

DeFi Security Fixed

3 High Lack of _currentCellAuction.sold Up-
date in Function addNewAuction

DeFi Security Fixed

4 Medium Incorrect Update of workEndTime DeFi Security Confirmed
5 Medium Lack of Refund in Function buyFood() DeFi Security Confirmed

6 Medium Lack of Check in Function
addNewAuction()

DeFi Security Fixed

7 Medium Lack of Interface to Withdraw
_poolFeeCollected Fee DeFi Security Fixed

8 Medium Lack of Upper Limit in Function
Withdraw()

DeFi Security Fixed

9 - Lack of Check in Function createLife() Recommendation Fixed
10 - Incorrect Comments Recommendation Fixed
11 - Redundant code Recommendation Fixed
12 - Improper usage of function Transfer Recommendation Fixed

13 - Higher Cell Price Due to Round Down De-
sign Note -

14 - Inconsistent BLOCK_TIME Note -

15 - Lack of Access Control in
sendClaimEnergyRequest()

Note -

16 - Lack of Evolution Implementation Note -

The details are provided in the following sections.

2.1 Software Security

2.1.1 Potential Gene Manipulation Due to Predictable Randomness

Severity Medium
Status Confirmed
Introduced by Version 1

Description In the function MintFromAuction() of the contract CellGame, it uses the function
getRandomNumber() to generate the bitmap (gene) of the cell. However, the randomness is
predictable and user-controlled because msg.sender is under the user’s control, allowing them
to calculate an address that yields a specific random number (cell gene).

388 function getRandomNumber() public returns (uint256) {
389 uint256 randomNumber = uint256(
390 keccak256(abi.encodePacked(block.timestamp, msg.sender))
391);
392 for (uint256 i = 0; i < MAX_RANDOM_NUM; i++) {
393 uint256 index = (randomNumber + i) % MAX_RANDOM_NUM;
394 if (!_randomBitmap.get(index)) {
395 _randomBitmap.set(index);
396 return index + 1;
397 }
398 }
399
400
401 _randomBitmap.unsetBucket(0, 0);
402 _randomBitmap.unsetBucket(1, 0);
403 _current_round_number += 1;
404 return getRandomNumber();
405 }

Listing 2.1: src/CellGame.sol

Impact Users can mint a specific cell/Life, leading to unfair issues.
Suggestion Use an oracle (e.g., chainlink) to get a random number for the cell gene.
Feedback from the Project This is by design.

2.2 DeFi Security

2.2.1 Lack of tokenId Check in Function createLife()

Severity High
Status Fixed in Version 2

Introduced by Version 1

Description In function createLife(), it uses the tokenId provided by the caller to get the
cells to be rented. However, it doesn’t make sure the tokenId (cellsPositions_[i][0]) rep-
resents a minted cell, and malicious users can set tokenId to a non-minted cell and construct
life from it. Because cellGene.bornTime is zero, absoluteTimeSinceStart will be a huge value,
and the rent fee would be rather low. Furthermore, since it will update the rentedCount for the
(non-minted) cell, when the cell is minted in the future, the user will suffer from indirect loss
since the cell’s rent fee will be rather high.

163 function createLife(uint256[][] memory cellsPositions_) public payable {
164 require(
165 cellsPositions_.length >= 2 && cellsPositions_.length <= 9,
166 "can only use 2-9 cells!"

6

167);
168 uint256 cumulatedPrice = 0;
169 uint256[] memory cellGenes = new uint256[](cellsPositions_.length);
170 uint32[] memory livingCellTotals = new uint32[](cellsPositions_.length);
171
172
173 uint256 totalRentFeeCollected = 0;
174 for (uint256 i = 0; i < cellsPositions_.length; i++) {
175 uint256 tokenId = cellsPositions_[i][0];
176 CellGene storage cellGene = _cellPool[tokenId]; // <== non-exist ID
177 uint256 absoluteTimeSinceStart = block.timestamp -
178 cellGene.bornTime;
179 uint256 cellRentPrice = getCellRentPrice(// <== low fee
180 cellGene.rentedCount,
181 absoluteTimeSinceStart
182);
183
184
185 cellGenes[i] = cellGene.bitmap.getBucket(0);
186 livingCellTotals[i] = cellGene.livingCellTotal;
187 cellGene.rentedCount += 1; // <== corrupt
188
189
190 uint256 rentFee = (cellRentPrice * 70) / 100;
191 _rentFeeCollected[tokenId] += rentFee;
192 totalRentFeeCollected += rentFee;
193
194
195 emit MintFeeReceived(tokenId, rentFee);
196
197
198 cumulatedPrice += cellRentPrice;
199 }
200
201
202 uint256 remainFee = cumulatedPrice - totalRentFeeCollected;
203 _devFeeCollected += remainFee / 3;
204 _poolFeeCollected += remainFee - remainFee / 3;
205
206
207 emit MintFeeForDevReceived(remainFee / 3);
208 emit MintFeeForPoolReceived(remainFee - remainFee / 3);
209
210
211 require(msg.value >= cumulatedPrice, "Insufficient funds");
212
213
214 _life.createLife(
215 msg.sender,
216 cumulatedPrice,
217 cellsPositions_,
218 cellGenes,
219 livingCellTotals

7

220);
221
222
223 if (msg.value > cumulatedPrice) {
224 (bool sent,) = payable(msg.sender).call{
225 value: msg.value - cumulatedPrice
226 }(""); // Returns false on failure
227 require(sent, "failed to return Ether");
228 }
229 }

Listing 2.2: src/CellGame.sol

Impact Users can corrupt any non-minted tokens and create life with low fees.
Suggestion Check if the cell exists in the function createLife().

2.2.2 Lack of _currentCellAuction.sold Update in Function addNewAuction

Severity High
Status Fixed in Version 2

Introduced by Version 1

Description In function addNewAuction(), it ensured that the sold cell number was equal to
maxSellable, and then updated the fields in _currentCellAuction. However, it didn’t reset the
_currentCellAuction.sold to zero.

244 function addNewAuction(
245 int256 targetPrice_,
246 int256 priceDecayPercent_,
247 int256 perTimeUnit_,
248 uint256 startTime_,
249 uint256 maxSellable_,
250 uint256 startTokenID_,
251 uint256 updateInterval_
252) public onlyOwner {
253 require(
254 _currentCellAuction.sold == _currentCellAuction.maxSellable,
255 "auction ongoing"
256);
257 require(startTime_ > block.timestamp, "invalid startTime");
258 int256 decayConstant = wadLn(1e18 - priceDecayPercent_);
259 require(decayConstant < 0, "NON_NEGATIVE_DECAY_CONSTANT");
260 _currentCellAuction.startTime = startTime_;
261 _currentCellAuction.targetPrice = targetPrice_;
262 _currentCellAuction.decayConstant = decayConstant;
263 _currentCellAuction.perTimeUnit = perTimeUnit_;
264 _currentCellAuction.maxSellable = maxSellable_;
265 _currentCellAuction.startTokenID = startTokenID_;
266 _currentCellAuction.updateInterval = updateInterval_;
267 }

Listing 2.3: src/CellGame.sol

8

Impact First, users would be charged with a higher rent fee calculated using getVRGDAPrice().
Second, users won’t be able to mint cells in auction rounds except the first one.
Suggestion Reset _currentCellAuction.sold to zero in function addNewAuction().

2.2.3 Incorrect Update of workEndTime

Severity Medium
Status Confirmed
Introduced by Version 1

Description Currently the function buyFood() is implemented according to the documentation
– “When food is consumed, the work time in BitLife is reset, rather than accumulated.” Specif-
ically, it will always set _lifePool[tokenIds[i]].workEndTime to currentTime + foodWorkTime.
However, when a user buys multiple food items at once in the function buyFood(), only the
life extension from the latest food counts. For instance, buying 1-day food after 7-day food
reduces the life extension to 1 day instead of 7, resulting in a loss of value.

126 function buyFood(uint256[] memory tokenIds, uint256 foodWorkTime)
127 external
128 payable
129 {
130 uint256 foodPrice = _foodPrices[foodWorkTime];
131 if (foodPrice <= 0) {
132 revert FoodNotOnSale(foodWorkTime);
133 }
134 uint256 foodPriceSum = 0;
135 uint256 currentTime = block.timestamp;
136 for (uint256 i = 0; i < tokenIds.length; i++) {
137 address owner = _ownerOf(tokenIds[i]);
138 if (msg.sender != owner) {
139 revert MustBeNftOwner(owner);
140 }
141 foodPriceSum += foodPrice;
142 _lifePool[tokenIds[i]].workEndTime = uint64(
143 currentTime + foodWorkTime
144);
145 emit FeedEvent(tokenIds[i], currentTime, foodWorkTime);
146 }
147 if (msg.value < foodPriceSum) {
148 revert EtherNotEnough(foodPriceSum);
149 }
150 }

Listing 2.4: src/Life.sol

Impact Users will get a shorter workEndTime than expected.
Suggestion Revise the logic to update workEndTime accordingly.
Feedback from the Project This is by design.

9

2.2.4 Lack of Refund in Function buyFood()

Severity Medium
Status Confirmed
Introduced by Version 1

Description In the function buyFood() of the contract Life, there is no refund logic when the
user pays more than needed.

126 function buyFood(uint256[] memory tokenIds, uint256 foodWorkTime)
127 external
128 payable
129{
130 uint256 foodPrice = _foodPrices[foodWorkTime];
131 if (foodPrice <= 0) {
132 revert FoodNotOnSale(foodWorkTime);
133 }
134 uint256 foodPriceSum = 0;
135 uint256 currentTime = block.timestamp;
136 for (uint256 i = 0; i < tokenIds.length; i++) {
137 address owner = _ownerOf(tokenIds[i]);
138 if (msg.sender != owner) {
139 revert MustBeNftOwner(owner);
140 }
141 foodPriceSum += foodPrice;
142 _lifePool[tokenIds[i]].workEndTime = uint64(
143 currentTime + foodWorkTime
144);
145
146
147 emit FeedEvent(tokenIds[i], currentTime, foodWorkTime);
148 }
149 if (msg.value < foodPriceSum) {
150 revert EtherNotEnough(foodPriceSum);
151 }
152}

Listing 2.5: src/Life.sol

Impact Users cannot receive refunds.
Suggestion Implement a refund mechanism in the function buyFood().
Feedback from the Project This is by design.

2.2.5 Lack of Check in Function addNewAuction()

Severity Medium
Status Fixed in Version 2

Introduced by Version 1

Description In the function addNewAuction(), the owner should ensure maxSellable_ is less
than or equal to 511 and startTokenID_ is larger than cellMintedNum.

10

244 function addNewAuction(
245 int256 targetPrice_,
246 int256 priceDecayPercent_,
247 int256 perTimeUnit_,
248 uint256 startTime_,
249 uint256 maxSellable_,
250 uint256 startTokenID_,
251 uint256 updateInterval_
252) public onlyOwner {
253 require(
254 _currentCellAuction.sold == _currentCellAuction.maxSellable,
255 "auction ongoing"
256);
257 require(startTime_ > block.timestamp, "invalid startTime");
258 int256 decayConstant = wadLn(1e18 - priceDecayPercent_);
259 require(decayConstant < 0, "NON_NEGATIVE_DECAY_CONSTANT");
260 _currentCellAuction.startTime = startTime_;
261 _currentCellAuction.targetPrice = targetPrice_;
262 _currentCellAuction.decayConstant = decayConstant;
263 _currentCellAuction.perTimeUnit = perTimeUnit_;
264 _currentCellAuction.maxSellable = maxSellable_;
265 _currentCellAuction.startTokenID = startTokenID_;
266 _currentCellAuction.updateInterval = updateInterval_;
267 }

Listing 2.6: src/CellGame.sol

Impact First, if startTokenID is set as an incorrect value, users won’t be able to mint a new
cell since the target tokenId, which is calculated via startTokenID, has already been minted.
Second, if maxSellable_ is larger than 511, users can get two cells in the same random number
in one round, which is inconsistent with our design.
Suggestion Add relevant check in function addNewAuction().

2.2.6 Lack of Interface toWithdraw _poolFeeCollected Fee

Severity Medium
Status Fixed in Version 2

Introduced by Version 1

Description In function createLife(), 70% of the cell rent fee is allocated to the cell’s owner,
10% to the dev team, and 20% to a liquidity pool. The project implements an interface called
withdrawRentFee() for the cell’s owner. For the dev fee, the project implements an interface
called withdrawDevFee(). However, there is no interface for the liquidity pool.

163 function createLife(uint256[][] memory cellsPositions_) public payable {
164 require(
165 cellsPositions_.length >= 2 && cellsPositions_.length <= 9,
166 "can only use 2-9 cells!"
167);
168 uint256 cumulatedPrice = 0;

11

169 uint256[] memory cellGenes = new uint256[](cellsPositions_.length);
170 uint32[] memory livingCellTotals = new uint32[](cellsPositions_.length);
171
172
173 uint256 totalRentFeeCollected = 0;
174 for (uint256 i = 0; i < cellsPositions_.length; i++) {
175 uint256 tokenId = cellsPositions_[i][0];
176 CellGene storage cellGene = _cellPool[tokenId];
177 uint256 absoluteTimeSinceStart = block.timestamp -
178 cellGene.bornTime;
179 uint256 cellRentPrice = getCellRentPrice(
180 cellGene.rentedCount,
181 absoluteTimeSinceStart
182);
183
184
185 cellGenes[i] = cellGene.bitmap.getBucket(0);
186 livingCellTotals[i] = cellGene.livingCellTotal;
187 cellGene.rentedCount += 1;
188
189
190 uint256 rentFee = (cellRentPrice * 70) / 100;
191 _rentFeeCollected[tokenId] += rentFee;
192 totalRentFeeCollected += rentFee;
193
194
195 emit MintFeeReceived(tokenId, rentFee);
196
197
198 cumulatedPrice += cellRentPrice;
199 }
200 uint256 remainFee = cumulatedPrice - totalRentFeeCollected;
201 _devFeeCollected += remainFee / 3;
202 _poolFeeCollected += remainFee - remainFee / 3;
203
204
205 emit MintFeeForDevReceived(remainFee / 3);
206 emit MintFeeForPoolReceived(remainFee - remainFee / 3);
207
208
209 require(msg.value >= cumulatedPrice, "Insufficient funds");
210
211
212 _life.createLife(
213 msg.sender,
214 cumulatedPrice,
215 cellsPositions_,
216 cellGenes,
217 livingCellTotals
218);
219
220
221 if (msg.value > cumulatedPrice) {

12

222 (bool sent,) = payable(msg.sender).call{
223 value: msg.value - cumulatedPrice
224 }(""); // Returns false on failure
225 require(sent, "failed to return Ether");
226 }
227 }

Listing 2.7: src/CellGame.sol

Impact The _poolFeeCollected fee cannot be withdrawn.
Suggestion Implement interface to withdraw the _poolFeeCollected fee.

2.2.7 Lack of Upper Limit in Function Withdraw()

Severity Medium
Status Fixed in Version 2

Introduced by Version 1

Description In contract CellGame, the function withdraw() can get any amount from the con-
tract. However, the owner is not expected to withdraw the cells’ rent fee and pool’s fee directly,
which can be a centralized problem.

157 function withdraw(uint256 amount) public onlyOwner {
158 require(amount <= address(this).balance, "Insufficient balance");
159 address payable owner = payable(owner());
160 owner.transfer(amount);
161 }

Listing 2.8: src/CellGame.sol

Impact The owner can withdraw assets that do not belong to them.
Suggestion Add an upper limit check in function withdraw().

2.3 Additional Recommendation

2.3.1 Lack of Check in Function createLife()

Status Fixed in Version 2

Introduced by Version 1

Description The function createLife() only ensures that the position is less than 10. A zero
value position will cause an underflow and result in a revert.

96 function createLife(
97 address to,
98 uint256 bornPrice,
99 uint256[][] calldata cellsPositions,

100 uint256[] calldata cellGenes,
101 uint32[] calldata livingCellTotals
102) external onlyCell {
103 for (uint256 i = 0; i < cellsPositions.length; i++) {

13

104 require(cellsPositions[i][1] < 10, "position error");
105 //...
106 for (uint256 i = 0; i < cellsPositions.length; i++) {
107 uint256 parentTokenID = cellsPositions[i][0];
108 newLife.parentTokenIds.push(parentTokenID);
109 uint256 position = cellsPositions[i][1];
110 uint256 x = ((position - 1) % 3) * 3;

Listing 2.9: src/Life.sol

Suggestion Add a zero check on cellsPosition[i][1].

2.3.2 Incorrect Comments

Status Fixed in Version 2

Introduced by Version 1

Description The comments "withdraw eth from the contract" and "Obtain 512 unique random
numbers for 10 rounds" are incorrect.

156 //withdraw eth from the contract
157 function withdraw(uint256 amount) public onlyOwner {

Listing 2.10: src/CellGame.sol

387 //Obtain 512 unique random numbers for 10 rounds
388 function getRandomNumber() public returns (uint256) {

Listing 2.11: src/CellGame.sol

Suggestion Revise the comments.

2.3.3 Redundant code

Status Fixed in Version 2

Introduced by Version 1

Description The function getTargetSaleTimeLogistic() and library SignedWadMath are redun-
dant.

45 function getTargetSaleTimeLogistic(
46 int256 sold,
47 int256 logisticLimit,
48 int256 timeScale
49) internal pure returns (int256) {
50 unchecked {
51 return
52 -unsafeWadDiv(
53 wadLn(
54 unsafeDiv(logisticLimit * 2e18, sold + logisticLimit) -
55 1e18
56),
57 timeScale

14

58);
59 }
60 }

Listing 2.12: src/lib/VRGDA.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity >=0.8.0;
3
4 // ...
5 function toHoursWadUnsafe(uint256 x) pure returns (int256 r) {
6 assembly {
7 // Multiply x by 1e18 and then divide it by 3600.
8 r := div(mul(x, 1000000000000000000), 3600)
9 }

10 }
11
12 function fromHoursWadUnsafe(int256 x) pure returns (uint256 r) {
13 assembly {
14 // Multiply x by 3600 and then divide it by 1e18.
15 r := div(mul(x, 3600), 1000000000000000000)
16 }
17 }

Listing 2.13: src/lib/SignedWadMath.sol

Suggestion Remove the redundant code.

2.3.4 Improper usage of function Transfer

Status Fixed in Version 2

Introduced by Version 1

Description The function withdraw() uses transfer() to transfer native token to the owner,
which is not suggested.

394 // withdraw available balance from the contract
395 function withdraw(uint256 amount) public onlyOwner {
396 require(_withdrawable, "withdraw paused");
397 uint256 withdrawable = address(this).balance -
398 (_totalRentFee + _devFeeCollected + _poolFeeCollected);
399 require(amount <= withdrawable, "Insufficient balance");
400 address payable owner = payable(owner());
401 owner.transfer(amount);
402 }

Listing 2.14: src/CellGame.sol

Suggestion Use call{value:amount} or Openzeppelin’s sendValue.

2.4 Note

15

2.4.1 Higher Cell Price Due to Round Down Design

Description In the function getCellRentPrice(), it always rounds down the timeSinceStart
parameter in favor of the cells’ owners and dev team. Thus, the returned cell price is higher
than the theoretical price.

95 function getCellRentPrice(
96 uint256 rentedCount,
97 uint256 absoluteTimeSinceStart
98) public view returns (uint256) {
99 return

100 VRGDA.getVRGDAPrice(
101 toDaysWadUnsafe(
102 absoluteTimeSinceStart -
103 (absoluteTimeSinceStart %
104 _lifeCreationConfig.updateInterval)
105),
106 _lifeCreationConfig.cellTargetRentPrice,
107 _lifeCreationConfig.decayConstant,
108 // Theoretically calling toWadUnsafe with sold can silently overflow but under
109 // any reasonable circumstance it will never be large enough. We use sold + 1 as
110 // the VRGDA formula’s n param represents the nth token and sold is the n-1th token

.
111 VRGDA.getTargetSaleTimeLogisticToLinear(
112 toWadUnsafe(rentedCount + 1),
113 _lifeCreationConfig.soldBySwitch,
114 _lifeCreationConfig.switchTime,
115 _lifeCreationConfig.logisticLimit,
116 _lifeCreationConfig.timeScale,
117 _lifeCreationConfig.perTimeUnit
118)
119);
120 }

Listing 2.15: src/CellGame.sol

2.4.2 Inconsistent BLOCK_TIME

Description The project sets BLOCK_TIME as 2 seconds, which is not consistent with the opbnb
chain (1 second) and the BSC chain (3 seconds). Inconsistent block time will lead to a higher
or lower evolution speed than designed.
Feedback from the Project The depolyer will set BLOCK_TIME before deploying the contract.

2.4.3 Lack of Access Control in sendClaimEnergyRequest()

Description Anyone can invoke the function sendClaimEnergyRequest() to update the claim-
Time.

8 function sendClaimEnergyRequest() public {
9 uint256 claimTime = block.timestamp;

10 emit ClaimEnergy(msg.sender, claimTime);

16

11 }

Listing 2.16: src/Energy.sol

Feedback from the Project This functionality is not implemented yet.

2.4.4 Lack of Evolution Implementation

Description According to the documentation1, the cell and life will evolve according to the
environment (e.g., land, air, sea) and time. Furthermore, cells should enter a cool-down period
after synthesizing a life form. However, there is no implementation for these evolution-related
functions.
Feedback from the Project This functionality is not implemented yet.

1https://cellulalifegame.gitbook.io/cellula/gameplay

17

https://cellulalifegame.gitbook.io/cellula/gameplay

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Potential Gene Manipulation Due to Predictable Randomness

	2.2 DeFi Security
	2.2.1 Lack of tokenId Check in Function createLife()
	2.2.2 Lack of _currentCellAuction.sold Update in Function addNewAuction
	2.2.3 Incorrect Update of workEndTime
	2.2.4 Lack of Refund in Function buyFood()
	2.2.5 Lack of Check in Function addNewAuction()
	2.2.6 Lack of Interface to Withdraw _poolFeeCollected Fee
	2.2.7 Lack of Upper Limit in Function Withdraw()

	2.3 Additional Recommendation
	2.3.1 Lack of Check in Function createLife()
	2.3.2 Incorrect Comments
	2.3.3 Redundant code
	2.3.4 Improper usage of function Transfer

	2.4 Note
	2.4.1 Higher Cell Price Due to Round Down Design
	2.4.2 Inconsistent BLOCK_TIME
	2.4.3 Lack of Access Control in sendClaimEnergyRequest()
	2.4.4 Lack of Evolution Implementation

